

First-Principles Calculation of pK_a Values for Organic Acids in Nonaqueous Solution

Feizhi Ding, Jeremy M. Smith,* and Haobin Wang*

Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003

jesmith@nmsu.edu; haobin@nmsu.edu Received December 1, 2008

Electronic structure theory, mainly the density functional theory (DFT), is applied to calculate the pK_a values for a variety of organic acids in several nonaqueous solvents: namely DMSO, MeCN, and THF. Following the supermolecule approach the solute molecule, together with a few solvent molecules in close proximity, is treated explicitly by the electronic structure theory, and the remaining solvent environment is approximated by using a standard dielectric continuum model. It is found that in most cases including only one explicit solvent molecule gives satisfactory results for pK_a estimations. Next, the equilibrium position free energy difference is calculated between a reference acid—base pair whose pK_a is known experimentally and the acid—base pair whose pK_a is to be determined theoretically. This bypasses the step of treating the solvated proton that most of the current theories have difficulty with and, to a large extent, induces favorable error cancelations in the final theoretical results. Accurate theoretical predictions of pK_a values are thus obtained at a moderate level of theory (MP2 single point on B3LYP/6-31+G(d) optimized geometry) for a series of organic acids spanning a wide range of acidities in DMSO, MeCN, and THF. Furthermore, the correlation between the pK_a values of these acids in different solutions is investigated theoretically, and excellent agreement is found with the experimental results.

1. Introduction

Knowledge of the pK_a value of a compound is important for understanding many chemical and biochemical processes that depend on proton transfer,¹ e.g., interpreting the functional mechanism of ionizable groups in a protein at a molecular level.² Accurate pK_a data are also important for understanding reaction mechanisms that do not involve proton transfer. For example, thermodynamic cycles that use pK_a data are used to determine the hydricities³ and bond dissociation energies⁴ of metal hydrides and other compounds.⁵ These data are critical for elucidating reaction mechanisms that involve hydrogen atom transfer/proton-coupled electron transfer.^{6,7}

However, the accurate experimental determination of pK_a values is not a trivial task in many cases and may pose a

^{*} To whom all correspondence should be addressed.

⁽¹⁾ Bell, R. P. *The Proton in Chemistry*; Chapman and Hall: London, UK, 1973.

⁽²⁾ Ohno, K.; Kamiya, N.; Asakawa, N.; Inoune, Y.; Sakurai, M. Chem. Phys. Lett. 2001, 341, 387.

^{(3) (}a) Qi, X.; Fu, Y.; Liu, L.; Guo, Q. Organometallics **2007**, *26*, 4197. (b) Fraze, K.; Wilson, A. D.; Appel, A. M.; Rakowski DuBois, M.; DuBois, D. L. Organometallics **2007**, *26*, 3918. (c) Raebiger, J. W.; Miedaner, A.; Curtis, C. J.; Miller, S. M.; Anderson, O. P.; DuBois, D. L. J. Am. Chem. Soc. **2004**, *126*, 5502. (d) Ellis, W. W.; Ciancanelli, R.; Miller, S. M.; Raebiger, J. W.; Rakowski DuBois, M.; DuBois, D. L. J. Am. Chem. Soc. **2008**, *125*, 12230. (e) Sarker, N.; Bruno, J. W. Organometallics **2001**, *20*, 55.

^{(4) (}a) Choi, J.; Pulling, M. E.; Smith, D. M.; Norton, J. R. J. Am. Chem. Soc. 2008, 130, 4250. (b) Fu, Y.; Liu, L.; Wang, Y.; Li, J.; Yu, T.; Guo, Q. J. Phys. Chem. A 2006, 110, 5874. (c) Ciancanelli, R.; Noll, B. C.; DuBois, D. L.; DuBois, M. R. J. Am. Chem. Soc. 2002, 124, 2984. (d) Protasiewicz, J. D.; Theopold, K. H. J. Am. Chem. Soc. 1993, 115, 5559. (e) Tilset, M.; Parker, V. D. J. Am. Chem. Soc. 1989, 111, 6711.

^{(5) (}a) Nieto, I.; Ding, F.; Bontchev, R. P.; Wang, H.; Smith, J. M. J. Am. Chem. Soc. 2008, 130, 2716. (b) Appel, A. M.; DuBois, D. L.; Rakowski DuBois, M. J. Am. Chem. Soc. 2005, 127, 12717. (c) Ellis, W. W.; Raebiger, J. W.; Curtis, C. J.; Bruno, J. W.; DuBois, D. L. J. Am. Chem. Soc. 2004, 126, 2738. (d) Soper, J. D.; Mayer, J. M. J. Am. Chem. Soc. 2003, 125, 12217. (e) Roth, J. P.; Lovell, S.; Mayer, J. M. J. Am. Chem. Soc. 2000, 122, 5486. (f) Ellis, W. W.; Miedaner, A.; Curtis, C. J.; Gibson, D. H.; DuBois, D. L. J. Am. Chem. Soc. 2002, 124, 1926. (g) Bordwell, F. G.; Cheng, J. P.; Ji, G.-Z.; Satish, A. V.; Zhang, X. M. J. Am. Chem. Soc. 1991, 113, 9790.

^{(6) (}a) Costentin, C. Chem. Rev. 2008, 108, 2145. (b) Liu, F.; Concepcion, J. J.; Jurss, J. W.; Cardolaccia, T.; Templeton, J. L.; Meyer, T. J. Inorg. Chem. 2008, 47, 1227. (c) Huynh, M. H. V.; Meyer, T. J. Chem. Rev. 2007, 107, 5004. (d) Mayer, J. M. Annu. Rev. Phys. Chem. 2004, 55, 363. (e) Mayer, J. M. Acc. Chem. Res. 1998, 31, 441.

JOC Article

significant experimental challenge.⁸ This is the case for species such as reaction intermediates, very strong acids, and very weak acids.⁹ As a result, determining pK_a values computationally has become an issue of great interest. Over the years, considerable theoretical effort $^{9-21,62}$ has been devoted to accurately modeling acid-base equilibria in solution and calculating the associated pK_a values. The general goal is to improve the reliability of the computational approach so as to have a realistic comparison with the available experimental data. Along this line Jorgensen et al.⁶² performed Monte Carlo simulations of the relative pK_a values for two weak organic acids, acetonitrile and ethane, in water, and good agreement with experiments was found. Schuurmann et al.¹⁰ calculated the pK_a values of 16 aliphatic carboxylic acids in aqueous solution, and found a reasonable correlation between the theoretical and experimental results. Nascimento et al.¹¹ proposed a thermodynamic cycle to calculate the absolute pK_a values of a number of aliphatic alcohols, thiols, and carboxylic acids in aqueous solution, and good agreement with the experimental pK_a values was found. Moreover, Shields et al.¹² carried out systematic study in predicting pK_a values for carboxylic acids and phenols in water, achieving an accuracy of less than one-half of a pK_a unit. Namazian et al.¹³ and Barone et al.¹⁴ also demonstrated the successful pK_a calculations for carboxylic acids in aqueous solution.

Advances in electronic structure theory and computer speed have made it possible to obtain free energies for small gasphase molecules at the level that is approaching the chemical accuracy.²² The situation is less satisfactory with respect to calculating the solvation free energy for a molecular system, in which the solvent molecules are either treated explicitly within the electronic structure theory or molecular dynamics (MD)

(10) Schuurmann, G. S.; Cossi, M.; Barone, V.; Tomasi, J. J. Phys. Chem. A 1998, 102, 6706.

- (11) Silva, C. O.; Silva, M. A.; Nascimento, M. A. C. J. Phys. Chem. A 1999, 103, 11194.
- (12) (a) Toth, A. M.; Liptak, M. D.; Phillips, D. L.; Shields, G. C. J. Chem. Phys. 2001, 114, 4595. (b) Liptak, M. D.; Shields, G. C. J. Am. Chem. Soc. 2001, 123, 7314. (c) Liptak, M. D.; Gross, K. C.; Seybold, P. G.; Feldgus, S.; Shields, G. C. J. Am. Chem. Soc. 2002, 124, 6421.

(13) (a) Namazian, M.; Heidary, H. *THEOCHEM* **2003**, 620, 257. (b) Namazian, M.; Halvani, S. J. *Chem. Thermodyn.* **2006**, *38*, 1495.

(14) Saracino, G. A. A.; Improta, R.; Barone, V. Chem. Phys. Lett. 2003, 373, 411.

(15) Chen, J.; McAllister, M. A.; Lee, J. K.; Houk, K. N. J. Org. Chem. **1998**, 63, 4611.

(16) Adam, K. R. J. Phys. Chem. A 2002, 106, 11963.

(17) Klamt, A.; Eckert, F.; Diedenhofen, M.; Beck, M. E. J. Phys. Chem. A 2003, 107, 9380.

(18) (a) Vianello, R.; Maksic, Z. B. *Eur. J. Org. Chem.* **2005**, *16*, 3571. (b) Vianello, R.; Maksic, Z. B. *Tetrahedron Lett.* **2005**, *46*, 3711. (c) Vianello, R.; Maksic, Z. B. *Tetrahedron* **2005**, *61*, 9381.

(19) Chipman, D. M. J. Phys. Chem. A 2002, 106, 7413.

(20) Almerindo, G. I.; Tondo, D. W.; Pliego, J. R., Jr. J. Phys. Chem. A 2004, 108, 166.

(21) Magill, A. M.; Cavell, K. J.; Yates, B. F. J. Am. Chem. Soc. 2004, 126, 8717.

FIGURE 1. Schematic representation of the supermolecule solvation approach.

simulation framework²³ or implicitly by using a continuumbased solvation model. The explicit solvent model requires a relatively high computational cost and is only applicable to a limited number of small molecule systems. On the other hand, various implicit solvation models have been developed based on dielectric continuum theories, which are applicable to larger molecule systems with reasonable computational effort.^{24,25} In the latter methods the solute molecule is put in a cavity that is surrounded by the solvent continuum. The size of the cavity and other solvent-related quantities are treated as adjustable parameters and obtained from physically motivated modeling procedures. Differences between these models are often distinguished by the specific definition of the cavity and how the solute—solvent interaction is treated.

Among the implicit solvent models the polarizable continuum model (PCM)²⁵ is one of the most popular approaches. It has been extensively used to calculate the pK_a values for acid/base equilibria in aqueous solution.^{10–14} Although reasonable results were obtained with the PCM method, all these works focused on only a few closely related acids. A more extensive study by Pliego and Riveros⁹ found that the error of using the PCM method in pK_a predictions can become as large as 7 pK_a units when a larger number of acids with different functional groups are considered. It was proposed that the solute—solvent interactions (e.g., hydrogen bonding) in the first solvation shell may cause such a sizable error.⁹

From a more fundamental point of view, the contribution to the solvation free energy is not only restricted to the bulk polarization effects, which may be described by a dielectric continuum model, but should also include the first-layer solvation effect, which is caused by the short-range solute—solvent interactions (i.e., hydrogen-bonding and charge-dipole interactions). One approach along this direction is to add a few solvent molecules in close proximity to the solute molecule, which forms a composite "supermolecule". A dielectric continuum model such as the PCM approach is then applied to this composite entity. A schematic representation of this supermolecule solvation approach is shown in Figure 1. This hybrid explicit/ implicit solvation model has been called the discrete-continuum,²⁶ the supermolecule-reaction-field,²⁷ and the cluster-

^{(7) (}a) Markle, T. F.; Rhile, I. J.; DiPasquale, A. G.; Mayer, J. M. *Proc. Natl. Acad. Sci.* **2008**, *105*, 8185. (b) Fecenko, C. J.; Thorp, H. H.; Meyer, T. J. *J. Am. Chem. Soc.* **2007**, *129*, 15098. (c) Zdilla, M. J.; Dexheimer, J. L.; Abu-Omar, M. M. *J. Am. Chem. Soc.* **2007**, *129*, 11505. (d) Cowley, R. E.; Bontchev, R. P.; Sorrell, J.; Sarracino, O.; Feng, Y.; Wang, H.; Smith, J. M. *J. Am. Chem. Soc.* **2007**, *129*, 2424.

⁽⁸⁾ Albert, A.; Serjeant, E. P. *The Determination of Ionization Constants*; Chapman and Hall: New York, 1984.

⁽⁹⁾ Pliego, J. R., Jr.; Riveros, J. M. J. Phys. Chem. A 2002, 106, 7434.

^{(22) (}a) Burk, P.; Koppel, I. A.; Koppel, I.; Leito, I.; Travnikova, O. Chem. Phys. Lett. 2000, 323, 482. (b) Seo, Y.; Kim, Y.; Kim, Y. Chem. Phys. Lett. 2001, 340, 186. (c) Pokon, E. K.; Liptak, M. D.; Feldgus, S.; Shields, G. C. J. Phys. Chem. A 2001, 105, 10483. (d) Ervin, K. M.; DeTuri, V. F. J. Phys. Chem. A 2002, 106, 9947. (e) Wiberg, K. B. J. Org. Chem. 2002, 67, 4787. (f) Remko, M. J. Phys. Chem. A 2002, 106, 5005.

⁽²³⁾ Sprik, M. Chem. Phys. 2000, 258, 139.

^{(24) (}a) Cramer, C. J.; Truhlar, D. G. Rev. Comput. Chem. **1995**, 6, 1. (b) Cramer, C. J.; Truhlar, D. G. Chem. Rev. **1999**, 99, 2161.

^{(25) (}a) Barone, V.; Cossi, M.; Tomasi, J. J. Chem. Phys. 1997, 107, 3210.
(b) Cammi, R.; Mennucci, B.; Tomasi, J. J. Phys. Chem. A 1998, 102, 870. (c) Cammi, R.; Mennucci, B.; Tomasi, J. J. Phys. Chem. A 2000, 104, 4690.

⁽²⁶⁾ Claverie, P.; Daudey, J. P.; Langlet, J.; Pullman, B.; Piazzola, D.; Huron, M. J. J. Phys. Chem. 1978, 82, 405.

⁽²⁷⁾ Freitas, L. C. G.; Longo, R. L.; Simas, A. M. J. Chem. Soc., Faraday Trans. 1992, 88, 189.

continuum model.²⁸ Using this type of approach one may calculate the solvation free energies with a much greater accuracy than those obtained by using a traditional dielectric continuum approach. For instance, Pliego et al. have successfully predicted the solvation free energies for a series of ions in aqueous solutions using the cluster-continuum model.²⁸ Furthermore, Pliego and Riveros⁹ apply this model in pK_a predications in aqueous solution. A total number of 17 acids with different functional groups were considered in their study and the calculated pK_a values are in good agreement with the experimental values. While these ideas have been explored mainly on the solvation of ions in aqueous solutions, less work has been done on the solvation of neutral molecules or in nonaqueous solutions.²⁹

The objective of this paper is to investigate the reliability of using the above approach to calculate the pK_a values of various organic acids in nonaqueous solutions. Instead of calculating the solvation free energy of each individual species, we compute the net solvation free energy change in an acid-base reaction. The hybrid explicit/implicit solvation method is employed to both neutral acidic molecules and their conjugate anionic bases. A series of common acids with different functional groups or substituents are treated in this work. Experimental pK_a values of these chosen acids in DMSO span a wide range (0 to 35 pK_a units) and have gradually changing acidities. These acids are representatives from all of the conventional families of OH acids (e.g., alcohols, phenols, carboxylic acids, and sulfonic acids), NH acids (e.g., amines and ammonium ions), and CH acids (e.g., hydrocarbons and ketones). This series therefore provides an interesting and challenging set of solutes, allowing for systematic and nonbiased evaluation of solvation effects in nonaqueous solution.

Another goal of this work is to predict the pK_a values which are not experimentally available. Acidity data in nonaqueous solutions are of continuing interest to chemists. Among these nonaqueous solvents, acetonitrile (MeCN) and tetrahydrofuran (THF) are widely used. The low polarity and solvating abilities of these solvents introduces complications associated with ionpairing that can complicate experimental pK_a determinations.³⁰ Although acidity data for different compounds in the pK_a range of 4 to 28 exist in MeCN, to the best of our knowledge, there are no data for acids with $pK_a^{MeCN} > 28$. Furthermore, large discrepancies exist in the pK_a measurements for some acids. For example, the experimental pK_a^{MeCN} value for 2,4-(NO₂)₂phenol ranges from 15.3^{31} to $18.4.3^{32}$ The situation is even worse in THF where pK_a data are quite limited.³³ In this paper, we predict the pK_a values in MeCN and in THF for the same set of acids calculated in DMSO. Good agreement is found between our calculated pK_a values and experimental data. Moreover, reliable acidity scale correlations of pK_a^{MeCN}/pK_a^{DMSO} and pK_a^{THF}/pK_a^{DMSO} are established, aiming to serve as a useful tool for pK_a -related studies in MeCN and THF.

2. Methodology and Computational Details

2.1. The Relative Determination of pK_a Based on a Reference Acid/Base Pair. A seemingly straightforward way to evaluate pK_a is to compute the total change in free energy for the solution-phase deprotonation reaction

$$\mathrm{HA}_{(\mathrm{solv})} \to \mathrm{H}^{+}_{(\mathrm{solv})} + \mathrm{A}^{-}_{(\mathrm{solv})} \tag{1a}$$

where "(solv)" denotes the appropriate solvation environment. However, problems arise when treating the solvated proton whose chemical structure is often unknown and difficult to model theoretically. This is largely due to the fact that the proton is much smaller than any other cations in acid-base reactions and it has strong interactions with the surrounding solvent molecules. The PCM and other similar continuum models underestimate the proton solvation energy.³⁴ Use of the experimental solvation free energy for the proton³⁵ is also problematic because there are considerable experimental uncertainties with respect to this information.³⁶ Such challenges to experiment and theory are reflected by the fact that in water the experimental value for the proton solvation energy ranges from -254 to -261kcal/mol,³⁷ whereas theoretically it ranges from -245.6 to -262.4 kcal/mol.^{38,39} Even less information is available for the proton solvation energy in nonaqueous solvents. These inadequacies in treating the solvated proton may induce large uncertainties in the calculated pK_a values, making eq 1a somewhat less useful for acidity predictions. To illustrate, for pK_a calculations in water, DMSO, and MeCN using the experimental proton solvation energies, Chipman¹⁹ observed a significant shift (~6 pK_a untis) between the predicted pK_a values and the experimental pK_a values.

The approach we used in this paper is to consider a reference deprotonation reaction whose pK_a is known experimentally

$$HB_{(solv)} \rightarrow H^{+}_{(solv)} + B^{-}_{(solv)}$$
(1b)

Since free energy is a state function, we can consider the following generic acid—base reaction by combining eqs 1a and 1b

$$HB_{(solv)} + B^{-}_{(solv)} \rightarrow HB_{(solv)} + A^{-}_{(solv)}$$
(2)

The free energy of eq 1b (denoted by ΔG_{1b}) for the anchor acid HB can be derived from its experimental pK_a value, $\Delta G_{1b} = (2.303RT)pK_a$ (HB); whereas the free energy of eq 2 (denoted by ΔG) can be obtained from a theoretical calculation. The pK_a of the unknown acid HA in eq 1a can thus be extracted from the free energy of eqs 1b and 2 as

$$pK_{a}(HA) = \frac{\Delta G_{1b} + \Delta G}{2.303RT} = pK_{a}(HB) + \frac{\Delta G}{2.303RT}$$
 (3)

⁽²⁸⁾ Pliego, J. R., Jr.; Riveros, J. M. J. Phys. Chem. A **2001**, 105, 7241.

^{(29) (}a) Fu, Y.; Liu, L.; Li, R.; Liu, R.; Guo, Q. J. Am. Chem. Soc. 2004, 126, 814. (b) Fu, Y.; Shen, K.; Liu, L.; Guo, Q. J. Am. Chem. Soc. 2007, 129, 13510. (c) Qi, X.; Liu, L.; Fu, Y.; Guo, Q. Organometallics 2006, 25, 5879. (d) Shen, K.; Fu, Y.; Li, J.; Liu, L.; Guo, Q. Tetrahedron 2007, 63, 1568. (e) Li, J.; Fu, Y.; Liu, L.; Guo, Q. Tetrahedron 2006, 62, 11801. (f) Li, J.; Liu, L.; Fu, Y.; Guo, Q. Tetrahedron 2006, 62, 4453.

⁽³⁰⁾ Sooväli, L.; Kaljurand, I.; Kütt, A.; Leito, I. Anal. Chim. Acta 2006, 566, 290.

 ⁽³¹⁾ Juillard, J.; Loubinoux, B. C. R. Acad. Sci., Ser. C 1967, 264, 1680.
 (32) Jasinski, T.; El-Harakany, A. A.; Halaka, F. G.; Sadek, H. Croat. Chem. Acta 1987, 51, 1.

^{(33) (}a) Garrido, G.; Rosés, M.; Ràfols, C.; Bosch, E. J. Solution Chem.
2008, 37, 689. (b) Rööm, E.-I.; Kütt, A.; Kaljurand, I.; Koppel, I.; Leito, I.;
Koppel, I.; Mishima, M.; Goto, K.; Miyahara, Y. Chem.-Eur. J. 2007, 13, 7631.
(c) Garrido, G.; Koort, E.; Ràfols, C.; Bosch, E.; Rodima, T.; Leito, I.; Rosés,
M. J. Org. Chem. 2006, 71, 9062.

⁽³⁴⁾ Pliego, J. R., Jr. Chem. Phys. Lett. 2003, 367, 145.

⁽³⁵⁾ Namazian, M.; Halvani, S. J. Chem. Thermodyn. 2006, 38, 1495.

⁽³⁶⁾ Pliego, J. R.; Riveros, J. M. Chem. Phys. Lett. 2000, 332, 597.

⁽³⁷⁾ Reiss, H.; Heller, A. J. Phys. Chem. 1985, 89, 4207.

⁽³⁸⁾ Mejia, J. A.; Lago, S. J. Chem. Phys. 2000, 113, 7306.

⁽³⁹⁾ Zhan, C.-G.; Dixon, D. A. J. Phys. Chem. A 2001, 105, 11534.

FIGURE 2. Optimized geometries for CH₃COOH(DMSO), CF₃COOH(DMSO), CH₃COOH(DMSO)₂, and CF₃COOH(DMSO)₂.

This approach bypasses the treatment of the solvated proton by using a reference anchor acid, which we term the relative determination method for the pK_a evaluation. Since the charges are the same on both sides of eq 2 and each conjugate acid/ base pair (HA/A⁻ or HB/B⁻) is of similar size and structure, we expect favorable error cancelations in the theoretical calculation of ΔG .

The free energy of the acid-base reaction in eq 2 can be evaluated as

$$\Delta G = [\Delta G_{g}(HA) - \Delta G_{g}(HB)] + \Delta G_{solv}(A^{-}) + \Delta G_{solv}(HB) - \Delta G_{solv}(HA) - \Delta G_{solv}(B^{-})$$
(4a)

It includes contributions from the gas-phase free energy and the solvation free energy, which can be written as

$$\Delta G = [\Delta G_{\rm g}({\rm HA}) - \Delta G_{\rm g}({\rm HB})] + \Delta \Delta G_{\rm solv} \qquad (4b)$$

Here, ΔG_{g} (HA) and ΔG_{g} (HB) represent the gas-phase acidities of HA and HB.⁴⁰ The method of calculating these quantities has been given previously.^{12,19,21} $\Delta \Delta G_{solv}$ is the net solvation free energy change in the overall reaction in eq 2, i.e.

$$\Delta\Delta G_{\rm solv} = \Delta G_{\rm solv}(A^{-}) + \Delta G_{\rm solv}(HB) - \Delta G_{\rm solv}(HA) - \Delta G_{\rm solv}(B^{-})$$
(5)

Thus, a successful prediction of pK_a values requires the accurate computation of gas-phase acidities, which can be obtained by high-level ab initio methods, and also the solvation free energies. In this work, we use a supermolecule approach to calculate the solvation contribution.

2.2. Solvation Energy Change: The Supermolecule/ PCM Approach. The idea of the supermolecule approach is to represent the solvated species as a cluster formed by attaching several solvent molecules to that species, and then to solvate the cluster by using a dielectric continuum model (e.g., PCM). This process can be modeled as:

where A is the solute particle, which can be either neutral or ionic. S stands for the solvent molecule. $A-(S)_n$ represents the resulting cluster. ΔG_{gas} refers to the gas-phase free energy change when forming the cluster. $\Delta G_{solv}(A)$, $\Delta G_{solv}(S)$, and $\Delta G_{solv}(A-S_n)$ represent the solvation free energy of the solute A, the solvent molecule S, and the cluster $A-S_n$, respectively. ΔG_{total} is the total free energy change of the solution-phase reaction.

In the present work, ΔG_{gas} is obtained at the MP2/6-311++G(d,p)//B3LYP/6-31+G(d) level of theory: geometry optimizations and harmonic vibrational frequency calculations are performed with the B3LYP/6-31+G(d) method, and the single-point electronic energy for an optimized geometry is computed at the MP2 level of theory with the larger 6-311++G(d,p)basis sets. For clusters (i.e., $A-S_n$) with more than one possible conformation, geometry optimizations are performed with several possible starting structures. In the final result the one with the lowest total free energy (i.e., gas-phase free energy plus the solvation free energy calculated with the PCM approach) is taken. It is found that for neutral and cationic solutes, the most stable structure of the cluster $A-S_n$ usually involves hydrogen bonding between the solute and the solvent molecules, as illustrated in Figure 2. For anionic solutes, the most stable conformation of $A-S_n$ is formed through chargedipole interactions as shown in Figure 3.

The number of attached solvent molecules (*n*) is chosen to minimize the total free energy change (i.e., ΔG_{total}) of the solution-phase reaction depicted in eq 6. The rationale for using

⁽⁴⁰⁾ The gas-phase acidity is the Gibbs free energy change for the following gas-phase dissociation reaction $HA(g) \rightarrow H^+(g) + A^-(g)$ at a standard state of 1 atm and 298.15 K.

JOC Article

FIGURE 3. Optimized geometries for CH₃COO⁻(DMSO), CF₃COO⁻(DMSO), CH₃COO⁻(DMSO)₂, CF₃COOH(DMSO)₂, and CH₃O⁻(DMSO)₂.

FIGURE 4. Optimized geometries for CF₃COOH(MeCN), and CF₃COO⁻(MeCN).

this criterion is to achieve the maximum calculated thermodynamic stability for the solvated species within the PCM framework. This practical approximation captures the most important interactions between the solute and the solvent molecules, which depends on the specific nature of the studied chemical species. It leaves the more averaged bulk solvent effect to the continuum solvent model and also neglects secondary effects such as clustering among solvent molecules. Other justifications of using the supermolecule approach have been given previously.²⁸

Thus, starting with n = 0, we have performed a series of computations for all studied species in DMSO, MeCN, and THF, searching for the lowest ΔG_{total} . To illustrate this, Table 1 lists some examples of the calculated total free energy changes when different numbers of solvent molecules are included in the supermolecule/PCM approach (also see eq 6). Optimized structures for some of the supermolecules are shown in Figures 25.

In DMSO, it is found that for a relatively strong acid, such as CF₃COOH, the calculated ΔG_{total} reaches the minimum when n = 1. In this case, the acid usually forms hydrogen bonds with the DMSO molecule, as displayed in Figure 2. This may imply that hydrogen bonding should be included in the first solvation shell when dealing with these acids. For a conjugate base, the A⁻(DMSO) cluster is usually formed through charge-dipole interactions, as shown in Figure 3. On the other hand, n = 0 was found for a weaker acid such as CH₃COOH.

In MeCN and THF, the number n is found to be zero for most species. For instance, the lowest total free energy change in forming the CF₃COO⁻-MeCN cluster is more positive than that obtained when no MeCN molecules were attached. This indicates that within the PCM approach the effect of the explicit solvent molecules is not as significant as that in DMSO, which

TABLE 1. Calculation of ΔG_{total} (kcal/mol), Using the Supermolecule/PCM Approach

$A-(S)_n$	$\Delta G_{ m total}{}^a$		
DMSO			
CF ₃ COOH	0		
CF ₃ COOH-(DMSO)	-0.89		
$CF_3COOH-(DMSO)_2$	6.73		
CF ₃ COO ⁻	0		
CF ₃ COO ⁻ -(DMSO)	-2.52		
$CF_3COO^(DMSO)_2$	5.19		
CH ₃ COOH	0		
CH ₃ COOH-(DMSO)	2.88		
CH ₃ COOH-(DMSO) ₂	6.24		
CH ₃ COO ⁻	0		
CH ₃ COO ⁻ -(DMSO)	1.29		
CH ₃ COO ⁻ -(DMSO) ₂	5.34		
MeCN			
picric acid	0		
picric acid-(MeCN)	-2.33		
picrate	0		
picrate-(MeCN)	-2.56		
Cl ₂ CHCOOH	0		
Cl ₂ CHCOOH-(MeCN)	1.95		
Cl ₂ CHCOOH-(MeCN) ₂	9.58		
Cl ₂ CHCOO ⁻	0		
Cl ₂ CHCOO ⁻ -(MeCN)	3.85		
Cl ₂ CHCOO ⁻ -(MeCN) ₂	10.41		
CF ₃ COO ⁻	0		
CF ₃ COO ⁻ -(MeCN)	1.44		
CH ₃ COO ⁻ -(MeCN) ₂	3.46		
THF			
CF ₃ COOH	0		
CF ₃ COOH-(THF)	3.84		
CF ₃ COO ⁻	0		
$CF_3COO^(THF)$	6.52		

^{*a*} ΔG_{total} is calculated from eq 6. Units of kcal/mol and T = 298.15 K. The minimum ΔG_{total} is labeled in bold.

may be due to the smaller dielectric constants of MeCN and THF. In this case, the standard PCM model works better. It should be noted that for some very strong acids such as picric acid and MeSO₂OH, the calculated solvation free energies reach a minimum when n = 1.

In summary, the use of the supermolecule/PCM approach has an important effect on the solvation of strong acids in DMSO,

FIGURE 5. Optimized geometries for $CF_3COOH(THF)$ and $CF_3COO^-(THF)$.

while the standard PCM method works better for most acids in MeCN and THF.

2.3. Computational Details. All electronic structure calculations in this study were performed with the quantum chemical program package Gaussian 03.42 The single-point electronic energies for a gas-phase system was calculated at the MP2/6-311++G(d,p)//B3LYP/6-31+G(d) level of theory: the standard 6-31+G(d) basis set (split-valence plus heavy-atom polarization and diffuse functions) was used for the geometry optimization of a neutral molecule, an ion, or a cluster, and the electronic energy for the optimized geometry was obtained at the MP2 level of theory with the larger 6-311++G(d,p) basis sets. The thus obtained electronic energy was then combined with the entropic contribution, calculated at the B3LYP/6-31+G(d) level of theory, to give the corresponding gas-phase free energy of the system. The latter contains vibration (with a harmonic approximation, using the calculated vibrational frequencies), rotation (with a rigid rotor approximation), and translation, which is part of the standard output of Gaussian 03 after a frequency analysis. For comparison purposes, the B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d) method and the B3LYP/6-311++G(d,p) method were also employed. In the former method, the geometry optimization and harmonic vibrational frequency calculation were performed at the B3LYP/6-31+G(d)level of theory and the single-point electronic energy for the optimized geometry was obtained at the same level of theory but with a large basis, i.e., 6-311++G(d,p). In the latter method, geometry optimizations and harmonic vibrational frequency calculations were performed at the B3LYP/6-311++G(d,p) level of theory (single-point electronic energy was also obtained at this level).

Solvation free energies for the solvent continuum were calculated by the standard PCM approach implemented in Gaussian 03 with use of the B3LYP/6-31+G(d) method. Bondi radii⁴³ were employed with the default scale factors for the atomic radii in DMSO, MeCN, and THF solvents. The gas-phase optimized geometries are used for all of the solution-phase calculations. It has been demonstrated that the change of geometry by the solvation effect is usually not significant,¹¹⁻¹⁴ which is also confirmed by our test calculations.

(43) Bondi, A. J. Phys. Chem. 1964, 68, 441.

CHART 1. Structures of Selected Acids

3. Results and Discussion

3.1. Gas-Phase Acidities. To assess the accuracy of gasphase free energy calculations, we have calculated the gas-phase acidities, eq 4b, of all the compounds considered in this study using the MP2/6-311++G(d,p)//B3LYP/6-31+G(d) method. The calculated gas-phase acidities⁴⁰ for 33 acids are listed in Table 2 (the structures of some of these acids are shown in Chart 1). Available experimental values are also included, taken from the NIST WebBook.⁴⁴ As evidenced in Table 2, the MP2/ 6-311++G(d,p)//B3LYP/6-31+G(d) method gives excellent gas-phase acidity prediction with a root-mean-square error of 2.0 kcal/mol and a mean-absolute error of 1.5 kcal/mol. To further evaluate the accuracy of using the present method, a linear regression is made by plotting all the calculated values versus experimental data. As can be seen in Figure 6, the slope of the regression line is close to unity, and the correlation coefficient (r = 0.999) is very high. Careful inspection of Table 2 shows that the deviation of the calculated result usually ranges from about 0 to 2 kcal/mol from experiment. Considering that the typical error bar of experimental values is around 2 kcal/ mol, our calculated results are acceptable. However, it is noteworthy that there are three instances of large deviation: picric acid (4.9 kcal/mol), imidazole (4.1 kcal/mol), and MeCN (3.2 kcal/mol). These large deviations may lead to an error of 2.3–4.6 pK_a units in later pK_a calculations.

As a comparison, we also applied the B3LYP/6-311++G(d,p)// B3LYP/6-31+G(d) method in the gas-phase acidity calculations. Geometry optimizations and harmonic vibrational frequency calculations were carried out with the B3LYP/6-31+G(d) method, followed by the single-point energy calculation at the B3LYP/6-311++G(d,p) level of theory. The calculated results are also listed in Table 2. Compared to the previous approach, the B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d) method leads to a greater deviation from experiment, with a root-mean-square error of 3.4 kcal/mol and a mean-absolute error of 2.4 kcal/

⁽⁴¹⁾ Ben-Naim, A. J. Phys. Chem. 1978, 82, 792.

⁽⁴²⁾ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanyakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A. *Gaussian 03*, Revision C.02; Gaussian, Inc., Wallingford, CT, 2004.

⁽⁴⁴⁾ Bartmess, J. E. Negative Ion Energetics Data In *NIST Chemistry WebBook, NIST Standard Reference Database Number 69*; Linstrom, P. J., Mallard, W. G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, 20899; July 2001 (http://webbook.nist.gov).

	gas-phase acidity (kcal/mol)			
acid	exptl ^a	MP2/6-311++G**// B3LYP/6-31+G* ^b	B3LYP/6-311++G**// B3LYP/6-31+G* ^c	B3LYP/6-311++G**d
picric acid	302.8 ± 2.0	297.90	293.28	293.72
MeSO ₂ OH	315 ± 2.0	313.99	312.43	312.67
CF ₃ COOH	317.4 ± 2.0	316.69	311.05	311.47
$2,4-(NO_2)_2$ -phenol		311.58	306.84	304.78
PhCOSH		326.02	323.95	322.72
Cl ₂ CHCOOH	321.9 ± 2.0	320.62	316.57	316.35
p-NO ₂ -C ₆ H ₄ OH	320.9 ± 2.0	320.55	314.16	314.71
PhCOOH	333 ± 2.0	331.98	331.10	330.96
CH ₃ COOH	341.1 ± 2.0	341.15	337.62	338.69
HCN	343.6 ± 0.30	343.71	341.88	341.86
(CH ₃ CO) ₂ CH ₂		334.88	330.90	330.62
C ₅ NH ₄ OH		326.31	328.28	328.29
PhCH ₂ SH		344.06	340.58	340.85
NC-NH ₂	344.1 ± 2.0	342.40	339.64	339.81
n-BuSH	347.4 ± 2.0	349.28	345.80	345.89
PhOH	342.3 ± 2.0	341.20	339.99	339.00
imidazole	342.8 ± 2.0	338.69	342.11	342.10
PhCONHNH ₂		335.61	335.51	335.38
pyrazole	346.4 ± 2.0	344.28	347.24	347.20
$(NH_2)_2C=S$		339.54	337.40	339.63
CF ₃ CH ₂ OH	354.1 ± 2.0	353.94	348.96	349.86
H ₂ NCOOEt	354.9 ± 2.2	354.46	353.93	353.97
PhCOCH ₃	354.5 ± 2.0	356.06	353.99	354.11
CH ₃ C(O)NH ₂	355.0 ± 2.0	354.08	355.58	355.96
CH ₃ C(O)CH ₃	361.9 ± 2.0	364.04	361.18	361.37
$(NH_2)_2C=O$	355.7 ± 3.2	355.40	355.19	355.27
CH ₃ OH	375.1 ± 1.1	375.94	371.80	371.60
MeCN	365.2 ± 2.0	368.45	363.38	363.47
DMSO	366.4 ± 2.0	369.10	368.37	368.51
4-methylpyridine	362.9 ± 5.0	366.81	363.27	362.95
PhNMe ₂ -H ⁺	217.3	219.02	216.25	216.25
pyridine-H ⁺	214.7	213.06	215.72	215.70
PhNH ₃ ⁺	203.3	204.39	203.23	203.89
Et_3N-H^+	227.0	226.27	226.43	226.44
root-mean-squ	uare error	2.0	3.4	3.2
mean absolu	ute error	1.5	2.4	2.4

^{*a*} Experimental gas-phase acidities are taken from NIST Standard Reference Database 69, March 1998 Release: *NIST Chemistry WebBook* (data compiled by J. E. Bartmess). ^{*b*} MP2/6-311++G(d,p) single-point calculation based on optimized geometries obtained by the B3LYP/6-31+G(d) method. ^{*c*} B3LYP/6-311++G(d,p) single-point calculation based on optimized geometries obtained by the B3LYP/6-31+G(d) method. ^{*d*} Geometry optimization and harmonic vibrational frequency calculation at the B3LYP/6-311++G(d,p) level of theory.

FIGURE 6. Correlation of the calculated gas-phase acidities (GA) and experimental values.

mol. Moreover, the B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d) method gives erroneous gas-phase acidity predictions for

carboxylic acids and alcohols: the calculated values are systematically lowered by 2 to 6 kcal/mol, and the largest deviation is observed to be 9.5 kcal/mol for picric acid. To assess the effect of using different level theories on the geometry optimizations and the vibrational frequency calculations, we have also performed full B3LYP/6-311++G(d,p) calculations. As demonstrated in Table 2, this method gives similar results as compared to the B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d,p) level of theory is not as reliable for gas-phase acidity predictions as the MP2/6-311++G(d,p)//B3LYP/6-31+G(d) method.

The accuracy of calculated gas-phase acidities can be further improved by employing higher level theories and larger basis sets, such as G3 and CBS-Q approaches. However, these methods are quite demanding computationally and will not significantly increase the accuracy. For example, the error of the G3 and CBS-Q calculations is about 1-2 kcal/mol,⁴⁵ which is not much smaller than the 2.0 kcal/mol obtained from our approach.

⁽⁴⁵⁾ Curtiss, L. A.; Redfern, K. P. C.; Pople, J. A. J. Chem. Phys. 2000, 112, 7374.

In summary, the economical MP2/6-311++G(d,p)//B3LYP/ 6-31+G(d) method allows us to accurately estimate the gasphase acidities, which can be finally used in the pK_a calculations.

3.2. Theoretical pK_a **Values in DMSO.** The largest set of pK_a data in nonaqueous solutions is for DMSO solvent, mainly due to the efforts of Bordwell.⁴⁶ The importance of these data is illustrated by the many thermodynamic investigations that use these pK_a values, e.g., bond energy determinations for organic molecules,^{5g} organometallic complexes⁴⁷ and metal-loenzyme model complexes.⁴⁸

With reliable theoretical gas-phase acidities in hand, the next crucial step for the pK_a estimation is the solution-phase calculation. In this work, we apply the supermolecule/PCM approach (Figure 1) to calculate the pK_a values in DMSO. As discussed in section 2.2, a crucial part of this approach is to determine the number of attached DMSO molecules.

For carboxylic acids (i.e., picric acid, MeSO₂OH, CF₃COOH, Cl₂CHCOOH, *p*-NO₂C₆H₄OH, and PhCOOH), some alcohols (i.e., PhOH and CF₃CH₂OH), and some other acids (i.e., PhCOSH, HCN, NH₂CSNH₂, NH₂CONH₂, and pyrazole), the calculated total free energy change when forming the cluster reaches a minimum for n = 1. In this case, the supermolecule/PCM method is employed by attaching one DMSO molecule onto each conjugate acid/base pair. For other acids, the number of attached solvent molecules was found to be n = 0. In this case, the standard PCM approach is used.

For the specific case of DMSO as solvent, we choose acetic acid (CH₃COOH) as the reference acid for pK_a estimation (HB = CH₃COOH in eq 2).

$$AH-(DMSO)_n+CH_3COO^- \rightarrow A^--(DMSO)_n+CH_3COOH$$
(7)

where n = 1 or 0 depending on the number of attached DMSO molecules determined in the supermolecule/PCM approach.

Thus, we focus on the net solvation free energy change $(\Delta\Delta G_{\text{solv}})$ of eq 7, which can be obtained by calculating the gas-phase clustering energies and the solvation free energies of the clusters. The pK_a of any unknown acid HA is then determined by combining the gas-phase acidities and the net solvation free energy change $(\Delta\Delta G_{\text{solv}})$ together (also see eqs 4a, 4b, and 5).

With the supermolecule/PCM approach, we have calculated the pK_a values of 33 organic acids in DMSO. The detailed results are summarized in Table 3 (column 3). Experimental values taken from Bordwell's pK_a data⁴⁶ are also listed for comparison. As shown in Table 3, the predicted pK_a values are in good agreement with the experimental data. The absolute error ranges from ~0 to 1.6 pK_a units. The root-mean-square error is observed to be 0.91 pK_a units and the mean-absolute error is only 0.79 pK_a units. To further analyze the correlation of the predicted pK_a values and experimental values, a linear regression is established in Figure 7. As evidenced in Figure 7, excellent correlation is found between the theoretical and experimental data. The straight line indicates that the best linear regression fits to an expression (see eq 8) with a slope close to unity and a very high correlation coefficient (r = 0.996).

$$pK_{a}^{\text{DMSO}}(\text{calcd}) = 1.02 \ pK_{a}^{\text{DMSO}}(\text{exptl}) - 0.11 \qquad (8)$$

The accuracy of the calculated results, also referred to as systematic error, is another important factor that affects the ability of the theory to predict pK_a values. Previous calculations

TABLE 3. Comparison between Calculated and Experimental pK_a Values in DMSO (Theoretical pK_a Values Are Obtained by Using the Supermolecule/PCM Approach)

		$pK_a^{DMSO}(calcd)$	
acid	$pK_a^{DMSO}(exptl)^a$	CH ₃ COOH anchor ^b	H ⁺ anchor ^c
picric acid	~ 0	-1.02	-2.86
MeSO ₂ OH	1.6	0.68	-1.16
CF ₃ COOH	3.45	4.00	2.16
2,4-(NO ₂) ₂ -phenol	5.1	5.20	3.37
PhCOSH	5.2	6.46	4.62
Cl ₂ CHCOOH	6.4	7.29	5.45
p-NO ₂ -C ₆ H ₄ OH	10.8	10.89	9.06
PhCOOH	11.0	11.98	10.14
CH ₃ COOH	12.3		10.46
HCN	12.9	14.31	12.47
$(CH_3CO)_2CH_2$	13.3	14.07	12.23
C ₅ NH ₄ OH	14.8	13.71	11.87
PhCH ₂ SH	15.4	15.32	13.48
NC-NH ₂	16.9	16.82	14.98
n-BuSH	17.0	16.92	15.08
PhOH	18.0	17.01	15.18
imidazole	18.6	17.97	16.13
PhCONHNH ₂	18.9	16.98	15.14
pyrazole	19.8	19.29	17.45
$(NH_2)_2C=S$	21.1	22.48	20.64
CF ₃ CH ₂ OH	23.45	23.18	21.34
H ₂ NCOOEt	24.6	25.30	23.46
PhCOCH ₃	24.7	25.72	23.89
CH ₃ C(O)NH ₂	25.5	24.56	22.72
CH ₃ C(O)CH ₃	26.5	27.56	25.73
$(NH_2)_2C=O$	26.95	26.58	24.75
CH ₃ OH	29.0	29.87	28.03
MeCN	31.3	30.99	29.15
DMSO	35	36.57	34.73
4-methylpyridine	35	36.01	34.17
PhNMe ₂ -H ⁺	2.4	2.42	0.59
pyridine-H ⁺	3.4	4.13	2.30
PhNH ₃ ⁺	3.6	2.19	0.35
Et ₃ N-H ⁺	9	10.03	8.20
root-mean-sc	quare error	0.91	1.9
mean absolute error		0.79	1.7

^{*a*} Experimental pK_a^{DMSO} values taken from ref 46. ^{*b*} Calculated pK_a^{DMSO} values with use of the relative determination method (eq 7). Acetic acid is chosen as the reference acid. ^{*c*} Absolute determination method, pK_a calculated with eq 9.

in DMSO solution usually observe a systematic deviation of several pK_a units from experimental data.^{19,29} This systematic deviation usually comes from the computational error of the chosen reference. For instance, in Chipman's study¹⁹ of several acids in DMSO and MeCN using the absolute determination method (i.e., eqs 1a and 1b), a significant shift of about 5 pK_a units was observed between the calculated and the experimental values. He assigned this systematic error to the uncertainties in the proton solvation free energy. It should also be mentioned that the polarizable continuum method was used in his study. To improve the accuracy, Guo et al.²⁹ applied the cluster-continuum model proposed by Pliego and Riveros²⁸ in the pK_a estimation in DMSO. Although good correlation was found between their calculated pK_a values and experimental data, there still exists a systematic deviation of about 2 pK_a units which, in our point of view, is mainly related to the use of DMSO/

⁽⁴⁶⁾ Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456.

⁽⁴⁷⁾ Trujillo, H. A.; Casado, C. M.; Ruiz, J.; Astruc, D. J. Am. Chem. Soc. **1999**, *121*, 5674.

^{(48) (}a) Goldsmith, C. R.; Stack, T. D. P. *Inorg. Chem.* **2006**, *45*, 6048. (b) Gupta, R.; Borovik, A. S. *J. Am. Chem. Soc.* **2003**, *125*, 13234.

FIGURE 7. Correlation of the calculated pK_a and experimental pK_a values in DMSO. Theoretical values are obtained by using the *relative* determination method. The reference acid is acetic acid ($pK_a^{\text{DMSO}}(\text{CH}_3\text{COOH}) = 12.3$).

 $MeSOCH_2^-$ as the reference. Since in their work the gas-phase acidity of DMSO was overestimated by 2.7 kcal/mol, the calculated p K_a values were thus underestimated by 2 p K_a units.

In an ideal situation, if all the quantities (i.e., gas-phase acidities and solvation-free energies) can be evaluated exactly, there will be no systematic shift in calculated results. Due to the limitations of the current theories and models, the systematic error cannot be eliminated completely. However, the computational error can be minimized to some extent, using either higher level theories or appropriate modeling strategies. Thus, to induce appropriate, favorable error cancelations, we use the relative determination method in which the experimental pK_a value of the anchor compound is known. For the pK_a prediction in DMSO solvent, acetic acid is chosen as the reference since it has a moderate pK_a , which allows us to evaluate its gas-phase acidity (using the MP2/6-311++G(d,p)//B3LYP/6-31+G(d) method) and solvation free energies (using the supermolecule/ PCM approach) with reasonable accuracy. As can be noticed in Figure 7, a small systematic shift of -0.11 pK_{a} units is obtained by using this strategy. On the other hand, the computational results do not depend sensitively on the choice of the anchor acid in DMSO. As demonstrated in Table 3, the largest absolute error between simulation and experiment is 1.6 pK_a units, which indicates that changing the anchor acid may induce at most a systematic shift of 1.6 pK_a units.

To summarize, in this study experimental pK_a values in DMSO are reproduced with high precision (0.91 pK_a units) and high accuracy (-0.11 pK_a units) by using a consistent supermolecule/PCM approach. It is important to note that a total of 33 organic acids with various functional groups are considered in this work and there is no empirical fitting or utilization of extra approximations in our calculations. The experimental pK_a of acetic acid is the only external value used in the above investigations.

A more challenging task is to predict pK_a purely by computations, i.e., without any external or experimental data. In the present work, we consider the simplest solvated form of the proton, i.e., H⁺(DMSO). The pK_a of any acid HA is thus calculated via eq 9.

$$JOCArticle$$

AH-(DMSO)_n + DMSO \rightarrow A⁻-(DMSO)_n+H⁺(DMSO)

(9)

where n = 1 or 0 depending on the optimal number of attached DMSO molecules determined in the supermolecule approach.

The calculated results are collected in Table 3 (last column). Compared to the previous relative determination method, this approach leads to a larger deviation from the experiment. The root-mean-square error and the mean-absolute error are observed to be 1.9 and 1.7 pK_a units correspondingly. All calculated values are systematically lowered by about 1.7 pK_a units from experimental data. This systematic shift may mainly come from the inaccurate calculation of the solvation free energies: the solvation free energy of DMSO is underestimated by 0.9 kcal/mol and the solvation free energy of H⁺(DMSO) is underestimated by 3.2 kcal/mol.⁴⁹

3.3. Theoretical p*K*_a **Values in Acetonitrile.** Acetonitrile (MeCN) has many properties that make it a suitable medium for acid—base studies. It has a low basicity and a very low ability to solvate anions.⁵⁰ The low basicity gives acetonitrile an advantage in studies of strong acids over DMSO, which is considerably more basic (stronger hydrogen-bond acceptor). It also has a high dielectric constant ($\varepsilon = 36.0$), which favors the dissociation of ion pairs into free ions. Thus, acetonitrile is a widely used solvent in chemistry, and is commonly used as a solvent for thermodynamic studies that require p*K*_a data.^{3–5}

There is less experimental pK_a data in MeCN than in DMSO and for some acids there are discrepancies in the experimental pK_a .^{31,32,51} Little computational work has been done on the prediction of pK_a values in MeCN,^{19,21} and those calculated pK_a values are not as accurate as experimental data. Therefore, a reliable, self-consistent and universally applicable prediction method is highly desirable, yet challenging.

With the success of using the relative determination method in DMSO, we further apply this protocol to calculate pK_a values in MeCN. The reference acid is again chosen as acetic acid (CH₃COOH), whose experimental pK_a^{MeCN} is found to be 22.3.⁵² The supermolecule/PCM method is employed to determine the net solvation free energy change of the exchange reaction (eq 10).

$$AH-(MeCN)_n + CH_3COO^- \rightarrow A^- - (MeCN)_n + CH_3COOH$$
(10)

where n = 1 for picric acid, MeSO₂OH, and 2,4-(NO₂)₂-phenol; and n = 0 for the other acids.

The p K_a of each acid is obtained by combining the calculated net solvation free energy change and the gas-phase acidities. Values calculated from this approach are summarized in Table 4 (column 3). Experimental p K_a values are found for picric acid (11.0),⁵³ p-NO₂-C₆H₄OH (22.85),⁵¹ benzoic acid (20.7),⁵² phenol (29.1),⁵⁴ PhNMe₂-H⁺ (11.4), pyridine-H⁺ (12.5), PhNH₃⁺ (10.6), and Et₃N-H⁺ (18.8).⁵⁵ From Table 4, it is clearly seen that the

(50) Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 45.

⁽⁴⁹⁾ The solvation free energy of H+(DMSO) is calculated as-66.4 kcal/mol, while the experimental value is-69.6 kcal/mol (taken from ref 22). The solvation free energy of DMSO is calculated as-6.8 kcal/mol, with a deviation of 0.9 kcal/mol from the experimental value of-7.7 kcal/mol (ref 22). Totally, the solvation free energy is underestimated by (3.2 kcal/mol-0.9 kcal/mol) = 2.3 kcal/mol, which leads to a shift of 1.7 pK_a units.

⁽⁵¹⁾ Kütt, A.; Leito, I.; Kaljurand, I.; Sooväli, L.; Vlasov, V. M.; Yagupolskii, L. M.; Koppel, I. A. J. Org. Chem. 2006, 71, 2829.

 ⁽⁵²⁾ Kolthoff, I. M.; Chantooni, M. K., Jr. J. Am. Chem. Soc. 1975, 97, 1376.
 (53) Kolthoff, I. M.; Chantooni, M. K., Jr. J. Am. Chem. Soc. 1965, 87, 4428.

TABLE 4.Calculated pK_a Values in MeCN and CorrespondingExperimental Data (Theoretical pK_a Values Are Obtained by Using
the Supermolecule/PCM Approach)

acid picric acid MeSO ₂ OH CF ₃ COOH	$\frac{pK_a^{MeCN}(exptl)}{11.0^c}$ 16.66 ^d	CH ₃ COOH anchor ^a 11.44 12.06 15.82 16.33	H^+ anchor ^b 14.92 13.12 16.88
picric acid MeSO ₂ OH CF ₃ COOH	11.0 ^c 16.66 ^d	11.44 12.06 15.82 16.33	14.92 13.12 16.88
MeSO ₂ OH CF ₃ COOH	16.66 ^d	12.06 15.82 16.33	13.12 16.88
CF ₃ COOH	16.66 ^{<i>d</i>}	15.82 16.33	16.88
	16.66 ^d	16 33	10.00
$2,4-(NO_2)_2$ -phenol		10.00	19.81
PhCOSH		18.37	19.43
Cl ₂ CHCOOH		19.23	20.29
p-NO ₂ -C ₆ H ₄ OH	22.85^{d}	22.60	23.66
PhCOOH	20.7^{e}	20.32	21.38
CH ₃ COOH	22.3^{e}		23.36
HCN		23.40	24.46
(CH ₃ CO) ₂ CH ₂		25.88	26.94
C ₅ NH ₄ OH		25.65	26.71
PhCH ₂ SH		26.32	27.38
NC-NH ₂		26.07	27.13
n-BuSH		27.61	28.67
PhOH	29.1^{f}	28.40	28.37
imidazole		29.26	30.32
PhCONHNH ₂		29.02	30.08
pyrazole		29.61	30.67
$(NH_2)_2C=S$		29.56	30.62
CF ₃ CH ₂ OH		32.94	34.00
H ₂ NCOOEt		34.01	35.07
PhCOCH ₃		36.62	37.68
CH ₃ C(O)NH ₂		35.31	36.37
CH ₃ C(O)CH ₃		38.29	39.35
$(NH_2)_2C=O$		34.79	35.85
CH ₃ OH		39.37	40.43
MeCN		42.32	43.38
DMSO		48.20	49.26
4-methylpyridine		47.19	48.25
PhNMe ₂ -H ⁺	11.4^{g}	13.39	14.45
pyridine-H ⁺	12.5^{g}	15.37	16.43
PhNH ₃ ⁺	10.6^{g}	12.99	14.05
Et ₃ N-H ⁺	18.8^{g}	21.07	22.13
root-mean-sq	uare error	1.5	2.7
mean absolute error		1.2	2.4

^{*a*} Calculated pK_a^{MeCN} values from the relative determination method. Acetic acid (CH₃COOH) is chosen as the reference acid. ^{*b*} Absolute determination method. ^{*c*} Reference 53. ^{*d*} Reference 51. ^{*e*} Reference 52. ^{*f*} Reference 54. ^{*g*} Reference 55.

theoretical results agree well with experiment for neutral acids. In particular, the calculated pK_a values for picric acid (11.4), p-NO₂-C₆H₄OH (22.6), benzoic acid (20.3), and phenol (28.4) are quite consistent with the experimental values, with the average error for these neutral acids is less than 0.4 pK_a units. For 2,4-(NO₂)₂-phenol, experimental pK_a value ranges from 15.3³¹ to 18.4,³² and our calculated value ($pK_a^{calcd} = 16.3$) falls into this range. Most recently, Leito et al.⁵¹have reported a pK_a value of 16.66 for 2,4-(NO₂)₂-phenol, based on a self-consistent UV-vis spectrophotometric measurement in MeCN. Again, our predicted result agrees well with the experiment.

For cationic acids, i.e., PhNMe₂-H⁺, pyridine-H⁺, PhNH₃⁺, and Et₃N-H⁺, the predicted pK_a values have somewhat large deviations from the experiments by ~2.2 pK_a units. Although this is not bad agreement when the error bars in both theory

TABLE 5. Calculated pK_a Values in MeCN for *Cationic Acids* with Use of the reference of PhNH₃⁺/PhNH₂

	$pK_a^{MeCN}(calcd)$		
cationic acid	$pK_a^{MeCN}(exptl)^a$	$PhNH_3^+ anchor^b$	
PhNMe ₂ -H ⁺	11.4	11.02	
pyridine-H ⁺	12.5	13.00	
PhNH ₃ ⁺	10.6		
Et ₃ N-H ⁺	18.8	18.70	

^{*a*} Reference 55. ^{*b*} Calculated pK_a^{MeCN} with the relative determination method. PhNH₃⁺ is chosen as the reference acid.

FIGURE 8. Correlation between pK_a^{MeCN} (calcd) and pK_a^{DMSO} (exptl).

and experiment are considered, the situation can be further improved by noting that the systematic shift may be assigned to the inaccurate calculation for solvation free energies of CH₃COOH/CH₃COO⁻. As depicted in eq 10, if HA is a neutral acid, we can expect a favorable error cancelation since the charges are the same on both sides of eq 10 and each conjugate acid/base pair is of similar size and structure. For cationic acids, the error in the calculated solvation free energies of CH₃COOH/ CH₃COO⁻ is not eliminated due to the asymmetry in charge distribution in eq 10. This problem can be avoided by using a cationic acid as the reference instead of CH₃COOH. Thus we have performed additional calculations for cationic acids using PhNH₃⁺ as the reference, and the results are listed in Table 5. As evidenced in Table 5, the calculated values for cationic acids are in excellent agreement with experiment.

The ultimate goal of our study is to provide a valuable predictive tool for acid/base chemistry in nonaqueous solutions. In this work, we try to establish a reliable correlation of the acidity scales in MeCN and DMSO, since experimental pK_a values in DMSO are usually available and there are many unknowns for experimental pK_a values in MeCN. With confidence in our theoretical approach, we plot the calculated pK_a^{MeCN} values for all acids (CH₃COOH anchor) against the corresponding experimental pK_a^{DMSO} values (see Figure 8). A least-squares fit line is found, giving the following correlation expression (eq 11):

$$pK_a^{MeCN} = 0.98 \ pK_a^{DMSO} + 11.6$$
(11)

As shown in Figure 8, the correlation coefficient is high (r = 0.991) and the standard deviation is small (1.33 pK_a units). This correlation can be verified by comparing the values

⁽⁵⁴⁾ Kütt, A.; Movchun, V.; Rodima, T.; Dansauer, T.; Rusanov, E. B.; Leito, I.; Kaljurand, I.; Koppel, J.; Pihl, V.; Koppel, I.; Ovsjannikov, G.; Toom, L.; Mishima, M.; Medebielle, M.; Lork, E.; Röschenthaler, G.; Koppel, I. A.; Kolomeitsev, A. A. J. Org. Chem. **2008**, 73, 2607.

⁽⁵⁵⁾ Kaljurand, I.; Kütt, A.; Sooväli, L.; Rodima, T.; Mäemets, V.; Leito, I.; Koppel, I. A. J. Org. Chem. 2005, 70, 1019.

obtained from eq 11 with the experimental pK_a^{MeCN} values. For example, the pK_a values of picric acid, acetic acid, and phenol in MeCN are estimated as 11.6, 23.6, and 29.2 correspondingly, agreeing well with the experimental values (11.0, 22.3, and 29.1). Our results can be compared with experimental measurements of pK_a values in MeCN using UV-vis spectrophotometry by Leito et al.,⁵¹ who established a correlation between pK_a^{MeCN} and pK_a^{DMSO} with an expression of $pK_a^{MeCN} = 0.98 \ pK_a^{DMSO} +$ 12.3. Gratifyingly, our correlation (eq 11) is quite consistent with that proposed from experimental results.

For comparison purposes, the absolute determination method (see eq 1a) is also employed to calculate the pK_a^{MeCN} values. In this approach, a simple solvated form of the proton, H⁺-(MeCN), is considered, and the results are summarized in Table 4 (last column). As seen from Table 4, the error ranges from 1 to about 4 pK_a units, and the largest deviation is observed to be 3.9 pK_a units for picric acid. The root-mean-square error is as large as 2.7 p K_a units. This method leads to large deviation from the experimental data.

3.4. Theoretical pK_a Values in THF. There is considerable interest in experimental acidity studies in THF (tetrahydrofuran)^{33,56–58} due to its relatively low reactivity, especially toward basic compounds. However, THF has a very low dielectric constant ($\varepsilon = 7.6$) and thus the ion-pairs are not dissociated as completely as those in DMSO and MeCN. Experimentally the absolute pK_a^{THF} values are very difficult to obtain due to the complication of ion-pairing in THF. A number of measures for acidity in THF have been proposed. Streitwieser and Antipin have introduced pK_{fi} , which measures ion-pair acidities in THF.⁵⁷ Morris introduced pK_{α}^{THF} as a measure of the acidity of metal hydrides and phosphines in THF; pK_{α}^{THF} is an approximation to pK_a^{THF} that uses the Fuoss equation⁵⁹ to account for the ion-pairing that occurs in THF solution.⁵⁸ Although in principle pK_a^{THF} and pK_a^{THF} should be equal, there may be disagreement because of errors in the corrections for ion-pairing.⁶⁰ Absolute pK_a^{THF} measurements for a number of acids have been used to anchor the pK_{α}^{THF} scale to the absolute pK_a^{THF} scale.⁶¹

In contrast, pK_a^{THF} values can be determined theoretically since the ion-pairs can be treated in complete dissociation form. To the best of our knowledge, there are no theoretical predictions of the pK_a values in THF. At this stage of development, calculation of pK_a^{THF} is still challenging due to the lack of experimental data for comparison.

(59) Fuoss, R. M. J. Am. Chem. Soc. 1958, 80, 5059.
(60) (a) Streitwieser, A.; Kim, Y.-J. J. Am. Chem. Soc. 2000, 122, 11783. (b) Streitwieser, A.; McKeown, A. E.; Hasanayn, F.; Davis, N. R. Org. Lett. 2005, 7, 1259.

(61) Garrido, G.; Koort, E.; Ràfols, C.; Bosch, E.; Rodima, T.; Leito, I.; Rosés, M. J. Org. Chem. 2006, 71, 9062.

(62) Jorgensen, W. L.; Briggs, J. M.; Gao, J. J. Am. Chem. Soc. 1987, 109, 6857.

In this present study, we apply the previous approach to calculate the pK_a values in THF. Furthermore, we want to establish in this paper a reliable correlation between pK_a^{THF} and pK_a^{DMSO} , aiming to serve as a valuable tool for future researchers in acid-base chemistry in THF.

The same set of acids as studied in DMSO and MeCN is also investigated in THF. The relative determination method is employed: picric acid is chosen as the reference for calculating pK_a^{THF} values of *neutral acids*; anilinium (PhNH₃⁺) is chosen as the reference for *cationic acids*. The experimental pK_a^{THF} of picric acid is found to be 11.6,⁵⁶ and the experimental pK_a^{THF} of PhNH₃⁺ is found to be 7.97.^{33a} The supermolecule/PCM approach is used to calculate the net solvation free energy change for the exchange reaction (eqs 11a and 11b).

$$AH-(THF)_n + picric acid \rightarrow A^--(THF)_n + picrate$$
 (11a)

where AH stands for neutral acids, n = 1 for MeSO₂OH, and n = 0 for the other acids.

$$BH^+ + PhNH_2 \rightarrow PhNH_3^+$$
(11b)

where BH⁺ stands for cationic acids.

The calculated pK_a^{THF} values, as obtained by combining the gas-phase acidities and the net solvation-free energy changes, are listed in Table 6 (column 3). Unfortunately, very limited experimental pK_a^{THF} data are available for comparison. Among these, the picric acid is the only *neutral acid* for which the pK_a^{THF} value is determined ($pK_a^{\text{THF}} = 11.6$).⁵⁶ On the other hand, the pK_a^{THF} values of a few cationic acids have been measured by Garrido et al.,⁶¹ and thus we adopt their results for PhNMe₂-H⁺, pyridine-H⁺, and Et₃N-H⁺. These experimental pK_a^{THF} values are summarized in Table 6.

To our satisfaction, the calculated results are in good agreement with available experimental data, with a root-meansquare error of 1.0 p K_a units and a mean-absolute error of 0.88 pK_a units. For example, the pK_a^{THF} values for Et₃N-H⁺ and PhNMe₂-H⁺ are calculated to be 12.92 and 7.71, respectively, as compared with the experimental pK_{α} values (13.66 and 7.39) in THF. The largest deviation is observed to be 1.6 pK_a units for pyridine-H⁺. Thus, all evidence suggests that our calculated pK_a^{THF} values are reliable, which gives us confidence in establishing a reasonable correlation of pK_a^{THF} with pK_a^{DMSO} .

An interesting observation found by Abdur-Rashid et al.^{58e} is that there are two separate $pK_a^{\text{THF}}/pK_a^{\text{DMSO}}$ correlations for cationic acids and neutral acids. The reason is probably that in THF cationic acids and neutral acids behave quite differently. Since most of our studied species are neutral acids and there are only four cationic acids considered in the present work, here we only build the pK_a^{THF}/pK_a^{DMSO} correlation for *neutral acids*. Figure 9 shows the plot of our calculated pK_a^{THF} values for the studied neutral acids against the experimental pK_a^{DMSO} values. A least-squares fit line through all the points gives a correlation expression (eq 12) with a very high correlation coefficient (r =0.992) and a standard deviation of 1.3 p K_a units.

$$pK_a^{\text{THF}} = 1.03 \ pK_a^{\text{DMSO}} + 11.3 \tag{12}$$

To evaluate the reliability of our pK_a^{THF}/pK_a^{DMSO} correlation, we compare it with an experimental correlation for neutral phosphorus-containing acids: $pK_{\alpha}^{\text{THF}} = 1.18 \ pK_{a}^{\text{DMSO}} + 11.3$, which is proposed by Morris et al.,^{58e} where pK_{α}^{THF} is an approximation to pK_a^{THF} (as mentioned above). Given that the

⁽⁵⁶⁾ Coetzee, J. F.; Deshmukh, B. K.; Liao, C.-C. Chem. Rev. 1990, 90, 827

⁽⁵⁷⁾ See for example: (a) Kaufman, M. J.; Gronert, S.; Streitwieser, A. J. Am. Chem. Soc. 1988, 110, 2829. (b) Krom, J. A.; Petty, J. T.; Streitwieser, A. J. Am. Chem. Soc. 1993, 115, 8024. (c) Antipin, I. S.; Garayev, R. F.; Verdernikov, A. N.; Konovalov, A. I. J. Phys. Org. Chem. 1994, 7, 181. (d) Facchetti, A.; Streitwieser, A. J. Org. Chem. 2004, 69, 8345.

^{(58) (}a) Hinman, J. G.; Lough, A. J.; Morris, R. H. Inorg. Chem. 2007, 46, 4392. (b) Kolomeitsev, A. A.; Koppel, I. A.; Rodima, T.; Barten, J.; Lork, E.; Röschenthaler, G.-V.; Kaljurand, I.; Kütt, A.; Koppel, I.; Mäemets, V.; Leito, I. J. Am. Chem. Soc. 2005, 127, 17656. (c) Kaljurand, I.; Rodima, T.; Pihl, A.; Mäemets, V.; Leito, I.; Koppel, I. A.; Mishima, M. J. Org. Chem. 2003, 68, 9988. (d) Rodima, T.; Kaljurand, I.; Pihl, A.; Mäemets, V.; Leito, I.; Koppel, 1. A. J. Org. Chem. 2002, 67, 1873. (e) Abdur-Rashid, K.; Fong, T. P.; Greaves, B.; Gusev, D. G.; Hinman, J. G.; Landau, S. E.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2000, 122, 9155.

JOC Article

TABLE 6.Calculated pK_a Values and CorrespondingExperimental pK_a Values in THF

		$pK_a^{THF}(calcd)$	
acid	$pK_a^{THF}(exptl)$	Picric acid anchor ^a	H^+ anchor ^b
picric acid	11.6 ^c		17.61
MeSO ₂ OH		13.48	13.53
CF ₃ COOH		14.67	17.42
2,4-(NO ₂) ₂ -phenol		15.44	20.88
PhCOSH		16.29	22.30
Cl ₂ CHCOOH		15.04	21.05
p-NO ₂ -C ₆ H ₄ OH		21.36	27.37
PhCOOH		19.46	25.47
CH ₃ COOH		22.08	28.09
HCN		23.80	29.81
(CH ₃ CO) ₂ CH ₂		25.48	31.49
C ₅ NH ₄ OH		24.37	30.38
PhCH ₂ SH		27.64	33.65
NC-NH ₂		26.12	32.13
n-BuSH		28.99	35.00
PhOH		27.77	33.78
imidazole		29.06	35.07
PhCONHNH ₂		28.31	34.32
Pyrazole		28.67	34.68
$(NH_2)_2C=S$		29.16	35.17
CF ₃ CH ₂ OH		33.63	39.64
H ₂ NCOOEt		34.69	40.70
PhCOCH ₃		37.36	43.37
CH ₃ C(O)NH ₂		35.71	41.72
CH ₃ C(O)CH ₃		38.99	45.00
$(NH_2)_2C=O$		38.14	44.15
CH ₃ OH		41.20	47.21
MeCN		42.51	48.52
DMSO		46.62	52.63
4-methylpyridine		47.08	53.09
		$PhNH_3^+$ anchor ^d	
PhNMe ₂ -H ⁺	7.39^{e}	7.71	10.38
pyridine-H ⁺	8.25^{e}	9.84	12.51
PhNH ₃ ⁺	7.97^{f}		10.64
Et ₃ N-H ⁺	13.66 ^e	12.92	18.36
root-mean-squ	are error	1.0	4.3
mean absolute error		0.88	4.1

^{*a*} Calculated pK_a values with the relative determination method. Picric acid is chosen as the reference for *neutral acids*, anilinium (PhNH₃⁺) is chosen as the reference for *cationic acids*. ^{*b*} Absolute determination method. ^{*c*} Reference 56. ^{*d*} Calculated pK_a values using the relative determination method. Picric acid is chosen as the reference for *neutral acids*, anilinium (PhNH₃⁺) is chosen as the reference for *cationic acids*. ^{*e*} Reference 61. ^{*f*} Reference 33a.

errors in pK_{α}^{THF} measurements are between 2 and 4 pK_{α} units,^{58e} there is good agreement between the computationally and experimentally derived extrapolations. Thus, this gives us confidence that our calculations may have useful predictive power for pK_{a} estimations in THF.

To compare, the absolute determination method (see eq 1a) is also employed to calculate the pK_a^{THF} values. In this approach, a simple solvated form of the proton, H⁺-(THF), is considered, and the results are summarized in Table 6 (last column). As seen from Table 6, this approach leads to very large deviation from the experimental data. The root-mean-square error is as large as 4.3 p K_a units. Thus, this method is not successful in the prediction of the pK_a^{THF} values.

4. Conclusions

A supermolecule/PCM solvation approach together with a relative determination method are applied to improve the accuracy of pK_a predictions in nonaqueous solvents. This work considers a total number of 33 organic acids with

FIGURE 9. Correlation between $pK_a^{\text{THF}}(\text{calcd})$ and $pK_a^{\text{DMSO}}(\text{exptl})$ for *neutral acids*.

various functional groups, including the representatives from all of the conventional families of OH acids (e.g., alcohols, phenols, carboxylic acids, and sulfonic acids), NH acids (e.g., amines and ammonium ions), and CH acids (e.g., hydrocarbons and ketons). The economical MP2/6-311++G(d,p)// B3LYP/6-31+G(d) method is employed and found to be sufficiently accurate in predicting the gas-phase acidities. Combining the supermolecule/PCM approach with the MP2/ 6-311++G(d,p)//B3LYP/6-31+G(d) method, we have successfully predicted the pK_a values of the studied acids in DMSO, MeCN, and THF. The calculated results show very good agreement with experimental data in all studied solvents. The precision of theoretical pK_a values in DMSO, MeCN, and THF is observed to be 0.93, 1.5, and 0.63 pK_a units, correspondingly. Furthermore, we have established reliable pK_a^{MeCN}/pK_a^{DMSO} and pK_a^{THF}/pK_a^{DMSO} correlations, allowing a reasonable estimate of the pK_a^{MeCN} and pK_a^{THF} values. We envisage that these correlations can serve as a valuable tool for future researchers in acid-base chemistry in nonaqueous solvents.

The motivation for using the relative determination method is to introduce appropriate, favorable error cancelation in the final results. In this approach the pK_a value of an unknown acid is calculated by anchoring to a reference acid whose pK_a value is already known experimentally. We have shown that in the present study of small acids in DMSO and THF, the computational results do not depend sensitively on the specific choice of the anchor acid, i.e., changing the anchor acid may induce at most a shift of only 1.6 pK_a units. The situation is slightly different in MeCN, where using a neutral anchor acid may induce a systematic error of $\sim 2.3 \text{ pK}_{a}$ units for the pK_a prediction of cationic acids. Although this is comparable to the error range of the experimental measurement and the electronic structure calculation, we can further improve the accuracy by adopting the following physically motivated strategy: using a neutral acid as an anchor for the pK_a prediction of neutral acids and using a cationic acid as an anchor for cationic acids.

A computational approach using the absolute determination method is also tested. This approach does not use any external parameters or empirical fittings. In the present study, we focus on a simplified treatment of proton solvation in nonaqueous solvents, with the combination of the supermolecule method.

pKa Values for Organic Acids in Nonaqueous Solution

Calculations show that this approach does not work well in the studied solvents. Future work should be directed toward developing a more applicable computational method for non-aqueous solvents.

Finally, the acids studied in this paper are relatively small. It is an interesting future direction to extend our approach to treat more complex, multifunctional compounds and compounds with multiple dissociation sites. The specific methodology, however, may need significant improvement beyond a simple application of the electronic structure theory within the PCM framework, i.e., to take into account multiple free-energy minima as well as dynamical effects.

Acknowledgment. This study is supported by the Nation Science Foundation CAREER award CHE-0348956 (H.W.) and the U.S. Department of Energy, Office of Basic Energy Sciences DE-FG02-08ER15996 (J.M.S.).

Supporting Information Available: Free energies for all acids in the gas phase and solvents (DMSO, MeCN, and THF) and Cartesian coordinates for the optimized structures of all acids. This material is available free of charge via the Internet at http://pubs.acs.org.

JO802641R